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Introduction
1. Basic theorem for accelerator magnet type of electromagnets in

the synchrotron radiation sourcethe synchrotron radiation source.

2. The main properties and roles of accelerator magnets.

3. Magnet design should consider both in terms of physics of the
components and the engineering constraints in practical
circumstances.

4. The use of code for predicting flux density distributions and the
iterative techniques used for pole face and coil design.

5. What parameters for accelerator magnet are required to designp g q g
the magnet?

6 An example of NSRRC magnet system will be described and6. An example of NSRRC magnet system will be described and
discussed.



Introduction of magnet arrangement



The magnet features of various accelerator magnets-1

Lorentz fource
vrr

Although, the electric field appears in the Lorentz forces,
)( BvEqF v ×+=

but a magnetic field of one Tesla gives the same bending
force as an electric field of 300 million Volts per meter for
relativistic particles with velocity v≈c.

∗ Magnets in storage ringg g g

Dipole - bending and radiation

Quadrupole focusing or defocusingQuadrupole - focusing or defocusing

Sextupole - chromaticity correction

Corrector - small angle correction



The magnet features of various accelerator magnet-2

Magnetic field features of lattice magnets
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Two sets of orthogonal multipoles with amplitude constants Bm and Am
which represent the Normal and Skew multipoles components. The fields
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which represent the Normal and Skew multipoles components. The fields
strength can be derived as

),,(),,( zyxzyxB Φ∇−=
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Therefore, the general magnetic field equation including only the most
commonly used upright multipole components is given by
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where B0,B1(A1), B2(A2),and B3(A3) denote the harmonic field strength
components and call it the normal (skew) dipole,quadrupole,sextupole and
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components and call it the normal (skew) dipole,quadrupole,sextupole and
so on.



The magnet features of various accelerator magnet-2

Magnetic spherical harmonics derived from Maxwell’s equations.

M ll’ i f iMaxwell’s equations for magneto-statics: ,

No current excitation: j = 0

Then we can use :

0B =⋅∇
vv

jH
vvv

=×∇

B Φ∇=
vv

Then we can use :

Therefore the Laplace’s equation can be obtained as: ∇2Φ = 0

where ΦM is the magnetic scalar potential.

MB Φ∇−=

M g p

Thinking the two dimensional case (constant in the z direction) and solving for 
cylindrical coordinates (r,θ):

( )( ) ( )∑
∞

In practical magnetic applications, scalar potential becomes:
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with n integral and an, bn a function of geometry.

This gives components of magnetic flux density:
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Field distribution features of varied multipole magnet



Dipole Magnet-1
Dipole field on dipole magnet expressed by n=1 case 
and and field polarity will be changed when the poleand and field polarity will be changed when the pole 
polarity changed. (          )

Cylindrical Cartesian
12

2
×
π

θ+θ−=θ cosbsinaB 11

θ+θ= sinbcosaB 11r

θθΦ ib

1x aB = ybaaBx )( 221 ++=

b+Φ ( )xybaybxa +++=Φ
1y bB = xbabBy )( 221 ++=

So, a1 = 0, b1 ≠ 0 gives vertical dipole field:

θ+θ=Φ sinrbcosra 11M ybxa 11M +=Φ ( )xybaybxaM 2211 +++=Φ

y y

ΦM= constant

y y

B
x x

Pure dipole 
magnet

Combine function 
magnet



Dipole Magnet-2
b1 = 0, a1 ≠ 0 gives horizontal dipole field (which is about rotated )

12×
π

By ByBx( ) (Bx)

( )x y (x)( y )

Normal term in separate function dipole Skew term in combine function dipole



Quadrupole Magnet-1
Quadrupole field given by n = 2 case and field polarity will be 
changed when the pole polarity changed ΔΘ= =2π /(2 × 2).

Cylindrical Cartesian
θ+θ= 2sinrb22cosra2B 22r ( )ybxa2B 22x +=22r

θ+θ−=θ 2cosrb22sinra2B 22

θ+θ=Φ 2sinrb2cosra 2
2

2
2M

( )
( )xbya2B 22Y +−=

( ) xyb2yxa 2
22

2M +−=Φ

These are quadrupole distributions, with a2 = 0 giving ‘normal’ quadrupole 
field. y y

ΦM = - C

ΦM = + CΦM = - C

x
ΦM = + CΦM = + C

xθ

ΦM = + C ΦM = - C

x x

normal skew

ΦM = - C

Θ= π /4 Θ= 0



Quadrupole Magnet-2
Then b2 = 0 gives ‘skew’ quadrupole fields (which is the above rotated by )22×

π

By (Bx) B (B )By (Bx) Bx (By)

X(Y) X (Y)X (Y)

Normal term Skew term



Sextupole Magnet-1
Sextupole field given by n = 3 case. and field polarity will be 
changed when the pole polarity changed ΔΘ= 2π /(3× 2).g p p y g ( )

Cylindrical Cartesian
θ+θ= 3sinrb33cosra3B 2

3
2

3r ( ) xyb6yxa3B 3
22

3x +−=33r

θ+θ−=θ 3cosrb33sinra3B 2
3

2
3

θθ 3sin3cos 3
3

3
3 rbraM +=Φ

( ) yy 33x

( )22
33y yxb3xya6B −+−=

( ) ( )32
3

23
3M yyx3bxy3xa −+−=Φ

ΦM = - C

y

ΦM = - CΦM = + C

y

ΦM = + CΦM = + C

B
x

ΦM = + C

ΦM = - C
xΘ

ΦM = + C

ΦM = - C

ΦM = + C ΦM = - C

Normal Skew
Θ= π /6 Θ= 0



Sextupole Magnet-2
For a3 = 0, b3 ≠ 0, By ∝ x2,  give normal sextupole

For a ≠ 0 b = 0 give skew sextupole (which is about rotated )
( )22

3y yxb3B −=
π

For a3 ≠ 0, b3 = 0,  give skew sextupole (which is about rotated )32×

By (Bx)
By (Bx)By (Bx)

X (y) Y (x)

Normal term Skew term



Error of dipole magnet

Practical dipole magnet. The shape of the pole
surfaces does not exactly correspond to a truesurfaces does not exactly correspond to a true
straight line and the poles have been truncated
laterally to provide space for coils. Skew

d l ill f th b d ilquadrupole will come from the bad coil.

n= 1(2m+1) m=0 1 2 3 ----- n is the allow termn= 1(2m+1) m=0,1,2,3 -----, n is the allow term
for the dipole magnet

(1) Quadrupole (n=2) : pole tilt or one bad coil -----Forbidden term

(2) Sextupole (n=3) : lateral truncation -----Allow term

(3) Octupole (n=4) : pole tilt or one bad coil -----Forbidden term

(4) Decapole (n=5) : lateral truncation -----Allow term



Error of quadrupole magnet

Practical quadrupole. The shape of the pole
surfaces does not exactly correspond to a truesurfaces does not exactly correspond to a true
hyperbola and the poles have been truncated
laterally to provide space for coils.

n= 2(2m+1) m=0 1 2 3 n is the allow termn= 2(2m+1) m=0,1,2,3 -----, n is the allow term
for the quadrupole magnet

(1) Sextupole (n=3) : a=b=c≠d, or one bad coil -----Forbidden term
(2) Octupole (n=4) : A=B, a=d, b=c, but a≠b -----Forbidden term
(3) D l ( 5) Til l i F bidd(3) Decapole (n=5) : Tilt one pole piece -----Forbidden term
(4) Dodecapole (n=6) : a. lateral truncation

b. a=b=c=d, A=B≠2R
-----Allow term

(5) 20-pole (n=10) : a. lateral truncation
b. a=b=c=d, A=B≠2R

-----Allow term



Error of sextupole magnet
n= 3(2m+1) m=0,1,2,3 -----, n is the allow term for the sextupole magnet
If dipole field (n=1) changed, the field for the allow term of dipole (n=2m+1) would also be
changedchanged.

The dipole perturbation in a
sextupole field generated by

The dipole and skew octupole perturbation
in a sextupole field generated by the badsextupole field generated by

geometrical asymmetry (a=b<c).
in a sextupole field generated by the bad
coil (1 and 4 is bad).

(1) Octupole (n=4) : a=b≠c, or one pair coil bad -----Forbidden term( ) p ( ) ≠ , p

(2) Decapole (n=5) : a=b=c≠2R -----Forbidden term

(3) 18-pole (n=9) : a. lateral truncation
b a=b=c≠2R

-----Allow term
b. a b c≠2R

(4) 30-pole (n=15) : a. lateral truncation
b. a=b=c≠2R

-----Allow term



Sextupole magnet with corrector mechanism

2

(1) Horizontal corrector(1) Horizontal corrector 
(vertical field):

2N turns of Coil 2 & 5 
bi t th ith N t13

combine together with N turns 
of Coil 3 & 4 & 1& 6.

(2) Vertical corrector 
(horizontal field):

4 6

N turns of Coil 1 & 6 
combine together with N turns 
of Coil 3 & 46 of Coil 3 & 4.

(3) Skew quadrupole corrector:
N turns of Coil 2 & 5

5

N turns of Coil 2 & 5.



Symmetry constraints in normal dipole, quadurpole 
and sextupole geometries

M t S t C t i tMagnet Symmetry Constraint

Dipole
φ(θ) = -φ(2π-θ) All an = 0;
φ(θ) = φ(π-θ) bn non-zero only for:φ( ) φ( ) n y

n=(2j-1)=1,3,5,etc; (2n)
φ(θ) = -φ(π-θ) bn = 0 for all odd n;
φ(θ) φ(2 θ) All 0

Quadrupole
φ(θ) = -φ(2π-θ) All an = 0;
φ(θ) = φ(π/2-θ) bn non-zero only for:

n=2(2j-1)=2,6,10,etc; (2n)

Sextupole

φ(θ) = -φ(2π/3-θ) bn = 0 for all n not multiples of 3;
φ(θ) = -φ(4π/3-θ)

p
φ(θ) = -φ(2π-θ) All an = 0;
φ(θ) = φ(π/3-θ) bn non-zero only for:

n=3(2j-1)=3,9,15,etc. (2n)



Ideal pole shapes are equal magnetic line

At the steel boundary, with no currents in the steel:
Apply Stoke’s theorem to a closed loop enclosing the boundary:

0H =×∇
vv

pp y p g y

( )∫∫ ∫ ⋅=⋅×∇ l
vvvvv

dHSdH B

dl Steel, μ = ∞

Hence around the loop:
dl Air

∫ =⋅ 0l
vv

dH

But for infinite permeability in the steel: H = 0;

∫

Therefore outside the steel H = 0 parallel to the boundary.

Therefore B in the air adjacent to the steel is normal to the steel
surface at all points on the surface should be equal. Therefore
f th t l f i i l t ti l liB Φ∇

vv
from , the steel surface is an iso-scalar-potential line.MB Φ∇−=



Contour equations of ideal pole shape

For normal (ie not skew) fields pole profile:

Dipole:
y = ± g/2; (g is interpole gap).

Q d lQuadrupole:
xy = ± R2/2;     (R is inscribed radius).

This is the equation of hyperbola which is a natural shape for theThis is the equation of hyperbola which is a natural shape for the 
pole in a quadrupole.

Sextupole:
3x2y – y3 = ± R3 (R is inscribed radius).



Ampere-turns in a dipole

NI/2
B is approx constant round loop l & g,
and        Hiron = Hair / μ; g

l

Bair = μ0 NI / (g + l/μ);
μ >> 1

NI/2

g, and l/μ are the reluctance of the gap 
and the iron.

Ignoring iron reluctance:
NI = B g /μ0



Ampere-turns in quadrupole magnet

Q d l h l ti 2/R 2Quadruple has pole equation:

On x axes

2/Rxy 2=

On x axes
By = G x,
G is gradient (T/m)G is gradient (T/m).

At large x (to give vertical field B): BxAt large x (to give vertical field B):

( )( ) 0
2

0 /2/ G/ μμ xRxBNI =⋅= l

ie
(per pole)0

2 2/ G μRNI = 0μ



Ampere-turns in sextupole magnet

Sextupole has pole equation:
332 Ryyx3 ±=−

On x axes

By = Gsx2, Gs is sextupole strength (T/m2).

At large x (to give vertical field ):

33 G RR ⎞⎛

0

3

0
2

3
2

0 3
Gs

3
 Gs/

μμ
μ R

x
RxBNI =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅=⋅= l



Judgment method of field quality
For central pole region:

( ) ( )BB 0 ( ) ( )( )BB 0Dipole: calculate and plot in pure dipole or in

combine function dipole magnet, g is gradient field in dipole magnet

( ) ( )
( )xB
BxB

y

yy 0− ( ) ( )( )
( )xB

xgBxB

y

yy +− 0

Quadrupole: calculate and plot and and
( ) ( )xg

dx
xdBy =

( ) ( )
( )0g

0gxg −

( )xBd 2 ( ) ( )

( )
( )xB

xbbxB

y

oy ][ 1+−

( ) bbbB ][ 2++Sextupole: calculate and plot and and

For integral good field region:

( ) ( )xS
dx

xBd
2

y = ( ) ( )
( )0S

0SxS −( )
( )xB

xbxbbxB

y

oy ][ 2
21 ++−

Dipole: or( ) ( )
( )∫

∫ ∫−
dsxB

dsBdsxB

y

yy 0 ( ) ( )[ ]
( )∫

∫ ∫∫ +−

dsxB

gxdsdsBdsxB

y

yy 0

∫ ∫
( ) ( )∫ ∫− dsgdsxg 0

Quadurpole: and

S t l d

( )
( )∫

∫ ∫ +−

dsxB

dsxbbdsxB o ])([ 1
( ) ( )

( )∫
∫ ∫

dsg

dsgdsxg

0

0

( ) ( )∫ ∫( )∫ ∫ ++ dbbbdB ])([ 2Sextuple: and ( ) ( )
( )∫

∫ ∫−
ds0S

ds0SdsxS( )
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∫ ∫ ++−
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dsxbxbbdsxB o ])([ 2
21



Magnet geometries and pole shim of dipole magnet

‘C’ Type:

Advantages:
Easy access for installation;
Classic design for field measurement;

Disadvantaged:
Pole shims needed;
Asymmetric (small);
Less rigid;

‘H’ Type:

Shim Detail

Advantages:
Symmetric of field features;
More rigid;More rigid;

Disadvantages:
Also needs shims;
Access problems for installationAccess problems for installation.
Not easy for field measurement.



Magnet geometries and pole shim of multipole magnet

Quadrupole and Sextupole Type:Quadrupole and Sextupole Type:

Shim

However shim design should consider the assembly accuracy andHowever, shim design should consider the assembly accuracy and 
the engineering factor



Effect of shim and pole width on distribution



Magnet chamfer for avoiding field saturation at 
magnet edge

Chamfering at both sides of dipole magnet to
compensate for the sextupole components and the
allow harmonic terms.

Chamfering at both sides of the magnet edge tog g g
compensate for the 12-pole (18-pole) on quadrupole
(sextupole) magnets and their allow harmonic terms.(sextupole) magnets and their allow harmonic terms.

Ch f i t t th d l l 45°Chamfering means to cut the end pole along 45° on
the longitudinal axis (z-axis) to avoid the field

t ti t t dsaturation at magnet edge.



Square ends

* display non linear effects (saturation);
* give no control of radial distribution in the fringeg g

region.
y

Saturation

zz



Chamfered ends or shim ends

* define magnetic length more precisely;g g p y;
* prevent saturation;
* control transverse distribution; control transverse distribution;
* prevent flux entering iron normal to lamination (vital 

for ac magnets)for ac magnets).
y

z



Comparison of four commonly used magnet 
computation codes

Advantages Disadvantages

MAGNET:

* Quick to learn, simple to use; * Only 2D predictions;

* Small(ish) cpu use; * Batch processing only-slows down problem turn-round 
time;

* Fast execution time; * Inflexible rectangular lattice;

* Inflexible data input;

* Geometry errors possible from interaction of input data Geometry errors possible from interaction of input data 
with lattice;

* No pre or post processing;

* Poor performance in high saturation; Poor performance in high saturation;

POISSON:

* Similar computation as MAGNET; * Harder to learn;

* i i / ibl * O l 2 di i* Interactive input/output possible; * Only 2D predictions.

* More input options with greater flexibility;

* Flexible lattice eliminates geometery errors;

* Better handing of local saturation;

* Some post processing available.



Comparison of four commonly used magnet 
computation codes

Advantages Disadvantages

TOSCA:

* Full three dimensional package; * Training course needed for familiarization;

* Accurate prediction of distribution and * Expensive to purchase; Accurate prediction of distribution and 
strength in 3D;

 Expensive to purchase;

* Extensive pre/post-processing; * Large computer needed.

* M ltipole f nction calc lation * Large se of memor* Multipole function calculation * Large use of memory.

*  For static & DC & AC field calculation
*  Run in PC or workstation

* Cpu time is hours for non-linear 3D problem.

RADIA:

* Full three dimensional package * Larger computer needed;

* Accurate prediction of distribution and *  Large use of memory;p
strength in 3D

g y
*  Careful to make the segmentation;

* With quick-time to view and rotat 3D structure * DC field calculation;

* Easy to build model with mathematic Easy to build model with mathematic

*  Fast calculation & data analysis
*  Run in PC or MAC

* Can down load from ESRF  ID group website.



Field calculation by Tosca code

Magnet pole and return yoke should be large enough to avoid

Without trim coil charging With trim coil charging

Magnet pole and return yoke should be large enough to avoid 
field saturation
The maximum current density is within 1 A/mm2 of the corrector  
on the sextupole magnet



AC & DC Corrector design

1

2

4

3

I(t)=I0Sin(ωt)

])()([)()( Rti
dt

tdiLtiVtiP ×+××=×=
I(t)=I0

RtitiVtiP ××× )()()(
∫=

T

average dttP
T

P
0

2 )(1Average power  =

AC corrector

RtitiVtiP ××=×= )()()(

DC corrector



Dipole shim or chamfer Effect
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Field analysis of dipole magnet
Lamination mapping Radial mapping
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The weak edge focus strength is around 0.026 T (0.0026 m-1)



Quadrupole & sextupole magnet chamfer effect
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Quadrupole chamfered ends or shim ends effect
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Quadrupole field analysis by FFT method

Br×Sin(2θ) Fast Fourier Transform



Sextupole field analysis by FFT method

Br×Sin(3θ) Fast Fourier Transform



B-H function of quadrupole magnet with iron yoke cutting
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There is a big difference of the quadrupole field strength between
2D and 3D at high field region

Saturation had happened with yoke cutting at the nominal fieldSaturation had happened with yoke cutting at the nominal field

Field saturation in the short quadrupole magnet is larger than the
long quadrupole magnet

Operating at 3.5GeV is impossible on the 3D calculation with
yoke cutting and without any compensation



Magnet effective length definition

145D008 Longitudinal Field Distribution
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Magnet end chamber or shim on lattice magnet
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Magnet end chamber & shim at the pole end

Quadrupole integral field strength Dipole integral field strengthQuadrupole integral field strength 
distribution w & w/o end chamber

Dipole integral field strength 
distribution w & w/o end shim



Dipole magnet analysis of the field measurement

Dipole magnet shown in Fig1- 8

Fig1 The field deviation as a function of x of
the two dimensional theoretical calculation, and Fig2 NSRRC magnet measure dipole data,
the measurement results of the combined
function bending magnet. Where the field
deviation definition is

Fig2 NSRRC magnet measure dipole data
for magnet field effective length BL/B0

( ) ( )[ ] ( )xBxaaxBBB // 21 +−=Δ



Quadrupole magnet analysis of the field measurement

Fig3  The gradient field deviation of the 2-D Fig4 After and before 2-2 shims
t lt f th i t t dcalculation and measurement results at the 

magnetic center.
measurement results of the integrated
field deviation



The results of field measurement NSRRC dipole magnet

Fig5 The dipole field distribution of the radial
and lamination mapping along the beam

Fig6 The gradient field distribution of radial
and lamination mapping along the beamand lamination mapping along the beam

direction
and lamination mapping along the beam
direction



The results of field measurement SRRC dipole magnet

Fig7 The sextupole distribution of the radial
d l i i i l h b

Fig8 The sextupole field distribution along the
b di ti f th ft d b f 2 2and lamination mapping along the beam

direction
beam direction of the after and before 2-2
shims measurement results



Dipole end shim
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The results of field measurement NSRRC quadrupole magnet

Quadrupole magnet shown in Fig9-10

Fig9 The field deviation as a function of
t di ti f th 2 D d

Fig10 The deviation of integrated field
ith diff t thi k h f itransverse direction of the 2-D and

measurement results on the midplane
with different thickness chamfering


